• <li id="00i08"><input id="00i08"></input></li>
  • <sup id="00i08"><tbody id="00i08"></tbody></sup>
    <abbr id="00i08"></abbr>
  • 新聞中心

    EEPW首頁 > 智能計算 > 業界動態 > 英特爾宋繼強:堅持科研的長期主義 推動AI向3.0時代躍遷

    英特爾宋繼強:堅持科研的長期主義 推動AI向3.0時代躍遷

    作者: 時間:2020-06-18 來源:EEPW 收藏

     最近幾天,新冠疫情在北京再次升級,使總體向好的國內抗疫形勢變得嚴峻。剛剛重啟的生產生活被再次打亂,我們或許在未來較長一段時間內都不得不面對防疫常態化這一現實。本周,我又開始切換到云辦公、云生活的狀態。遠程辦公、視頻會議已成習慣,孩子的課業交給了在線教育平臺,消費和娛樂的方式也變成了看網絡直播、聽云演唱會。在疫情這一特殊的場景下,一系列新型應用需求被全面激活,真正滲透到了我們日常生活的方方面面。

     

    圖片.png

                                                         中國研究院院長 宋繼強博士


    作為一個科技從業者,我深知這些新應用的爆發絕非一日之功。從量變到質變的過程,是長期的科研布局與數字化基礎設施建設的結果。瞄準長遠的目標與價值,堅持長期的科技研究,是我們面對疫情這樣不確定事件時唯一確定的事情。這不僅需要前瞻性的視野與布局,還需要有不為眼前利益所動搖的決心與意志。

     

    AI的發展進程看,人類對于AI的探索已經持續了70多年。回望AI的發展歷程,我們可以清晰地捕捉到幾個關鍵的節點。AI第一波浪潮,是通過由人制定的各種規則去做理論性的推理。雖然在推理方面表現不俗,但僅限于幾個嚴格定義的問題,且沒有學習能力,無法處理不確定性問題。而真正令AI漸入佳境的,則源于由深度學習所觸發的AI第二波浪潮。互聯網、移動互聯網等所產生的海量數據,給機器提供了學習、挖掘和試錯的對象,讓系統得以自發地找到規律,作出預測、判斷和決策。數據的增長,外加算力的提升以及基于深度學習構建的算法演進,這三張王牌讓一些典型的深度學習應用達到甚至超越了人的能力。這使得越來越多的樂觀主義者深信,深度學習是極具價值且值得產業界大規模跟進的方向。

     

    然而,深度學習就是AI的終極答案嗎?隨著對于深度學習的研究深入,我們發現還有一些問題亟待解決。首先,能耗是最大的挑戰。有研究報告顯示,采用服務器級別的CPU加上GPU集群去訓練一個大型AI模型,其所消耗電力產生的碳排放量,相當于5輛美式轎車整個生命周期所消耗的碳排放量。試想,如果各行各業都沿用這樣的AI計算模式,人類的生態環境將會遭到何等的破壞。然后,數據量是又一大挑戰。目前的深度學習過于依賴大數據,在一些小數據量的場景下,深度學習使用會非常有限。AI應該像人類大腦那樣,通過小數據進行自我學習。在訓練過程中,如何在保證AI模型能力的情況下,大幅降低能耗并減少所需花費的時間和數據量?這是AI繼續向前發展的重要方向。但現在看來,基于大規模GPU并行計算去加速深度學習訓練的方式,并不能滿足這個條件。

     

    一個真正的智能系統,應該是環境自適應性的自然智能。首先,它不僅能處理確定性的問題,還能處理不確定性問題。第二,它不僅能夠做事,還必須是可解釋的。第三,它不完全依靠大數據驅動,即便少量數據也可實現更高效能的持續學習。第四,它應具備高可靠性,或者說符合人類給它設定的倫理道德。這是我們對于AI技術下一發展階段——AI 3.0時代的展望。

     

    目前,我們正處于從AI 2.0AI 3.0時代的轉折點。那么,究竟什么有望成為穿透AI未來的利刃呢?從目前看,作為一種前沿的計算模式,神經擬態計算最有可能開辟出一條從AI 2.0AI 3.0的嶄新賽道。神經擬態計算,是在傳統半導體工藝和芯片架構上的一種嘗試和突破。它通過模擬人腦神經元的構造和神經元之間互聯的機制,能在低功耗以及少量訓練數據的條件下持續不斷自我學習,大幅提高了能效比。顯然,神經擬態計算的特點非常符合AI3.0的發展需求。因此,神經擬態計算也被寄予厚望,有可能在人類邁入下一代AI的進程中發揮重要作用。

     

    是一家立足長遠、推動底層技術創新的公司,以此來幫助客戶取得商業應用上的成功。為此,我們不斷對前沿技術領域加大研究,即便這些領域在短期內無法看到實際成效。圍繞神經擬態計算,我們從很早就開始積極探索這一嶄新的計算模式,并取得了令人矚目的成就。的神經擬態計算芯片Loihi已經具備了嗅覺的能力,神經擬態系統Pohoiki Springs已經擁有1億神經元的計算能力,這已經相當于一個小型哺乳動物的大腦。

     

    圖片.png

     

    圖片.png

     

    當然,神經擬態計算還處于非常早期的階段,要想將這項技術真正應用于AI,我們還有很長的路要走。但我相信,底層技術的創新必須堅持長期主義,長時間地專注于一個方向與賽道,以這種確定性去對抗發展過程中的一切不確定性,才有可能最終取得成功。


    關鍵詞: 英特爾 AI

    評論


    相關推薦

    技術專區

    關閉
    主站蜘蛛池模板: 重庆市| 石泉县| 陆丰市| 双鸭山市| 崇左市| 建瓯市| 屯门区| 扶沟县| 山西省| 洪泽县| 友谊县| 天镇县| 宿迁市| 合江县| 平江县| 泗水县| 遂溪县| 广德县| 扶余县| 邻水| 寿宁县| 凤冈县| 黄山市| 平昌县| 霍州市| 邯郸县| 肇东市| 临清市| 临泉县| 股票| 万荣县| 囊谦县| 宜阳县| 彩票| 青浦区| 沅陵县| 出国| 达拉特旗| 陵水| 日喀则市| 乌鲁木齐县|