• <li id="00i08"><input id="00i08"></input></li>
  • <sup id="00i08"><tbody id="00i08"></tbody></sup>
    <abbr id="00i08"></abbr>
  • 新聞中心

    EEPW首頁 > 設計應用 > RF射頻電路設計中常見問題

    RF射頻電路設計中常見問題

    作者: 時間:2010-12-01 來源:網絡 收藏

    射頻(RF)PCB設計,在目前公開出版的理論上具有很多不確定性,常被形容為一種“黑色藝術”。通常情況下,對于微波以下頻段的電路(包括低頻和低頻數字電路),在全面掌握各類設計原則前提下的仔細規劃是一次性成功設計的保證。對于微波以上頻段和高頻的PC類數字電路。則需要2~3個版本的PCB方能保證電路品質。而對于微波以上頻段的RF電路.則往往需要更多版本的:PCB設計并不斷完善,而且是在具備相當經驗的前提下。由此可知RF電設計上的困難。

    本文引用地址:http://www.czjhyjcfj.com/article/260630.htm

    RF電路設計的常見問題

    1數字電路模塊和模擬電路模塊之間的干擾

    如果模擬電路(射頻)和數字電路單獨工作,可能各自工作良好。但是,一旦將二者放在同一塊電路板上,使用同一個電源一起工作,整個系統很可能就不穩定。這主要是因為數字信號頻繁地在地和正電源(>3V)之間擺動,而且周期特別短,常常是納秒級的。由于較大的振幅和較短的切換時間。使得這些數字信號包含大量且獨立于切換頻率的高頻成分。在模擬部分,從無線調諧回路傳到無線設備接收部分的信號一般小于lμV。因此數字信號與射頻信號之間的差別會達到 120dB。顯然.如果不能使數字信號與射頻信號很好地分離。微弱的射頻信號可能遭到破壞,這樣一來,無線設備工作性能就會惡化,甚至完全不能工作。

    2供電電源的

    射頻電路對于電源噪聲相當敏感,尤其是對毛刺電壓和其他高頻諧波。微控制器會在每個內部時鐘周期內短時間突然吸人大部分電流,這是由于現代微控制器都采用 CMOS工藝制造。因此。假設一個微控制器以lMHz的內部時鐘頻率運行,它將以此頻率從電源提取電流。如果不采取合適的電源去耦.必將引起電源線上的電壓毛刺。如果這些電壓毛刺到達電路RF部分的電源引腳,嚴重時可能導致工作失效。

    3不合理的地線

    如果RF電路的地線處理不當,可能產生一些奇怪的現象。對于數字電路設計,即使沒有地線層,大多數數字電路功能也表現良好。而在RF頻段,即使一根很短的地線也會如電感器一樣作用。粗略地計算,每毫米長度的電感量約為lnH,433MHz時10toniPCB線路的感抗約27Ω。如果不采用地線層,大多數地線將會較長,電路將無法具有設計的特性。

    4對其他模擬電路部分的

    在PCB電路設計中,板上通常還有其他模擬電路。例如,許多電路上都有模,數轉換(ADC)或數/模轉換器(DAC)。射頻發送器的發出的高頻信號可能會到達ADC的模擬輸入端。因為任何電路線路都可能如一樣發出或接收RF信號。如果ADC輸入端的處理不合理,RF信號可能在ADC輸入的ESD二極管內自激。從而引起ADC偏差。

    RF電路設計原則及方案

    1RF布局概念

    在設計RF布局時,必須優先滿足以下幾個總原則:

    (1)盡可能地把高功率RF放大器(HPA)和低噪音放大器(LNA)隔離開來,簡單地說,就是讓高功率RF發射電路遠離低功率RF接收電路:
    (2)確保PCB板上高功率區至少有一整塊地,最好上面沒有過孔,當然,銅箔面積越大越好;
    (3)電路和電源去耦同樣也極為重要;
    (4)RF輸出通常需要遠離RF輸入;
    (5)敏感的模擬信號應該盡可能遠離高速數字信號和RF信號。

    2物理分區和電氣分區設計原則

    設計分區可以分解為物理分區和電氣分區。物理分區主要涉及元器件布局、方向和屏蔽等;電氣分區可以繼續分解為電源分配、RF走線、敏感電路和信號以及接地等的分區。

    2.1物理分區原則

    (1)元器件位置布局原則。元器件布局是實現一個優秀RF設計的關鍵.最有效的技術是首先固定位于RF路徑上的元器件并調整其方向,以便將RF路徑的長度減到最小,使輸入遠離輸出。并盡可能遠地分離高功率電路和低功率電路。

    (2)PCB堆疊設計原則。最有效的電路板堆疊方法是將主接地面(主地)安排在表層下的第二層,并盡可能將RF線布置在表層上。將RF路徑上的過孔尺寸減到最小,這不僅可以減少路徑電感,而且還可以減少主地上的虛焊點,并可減少RF能量泄漏到層疊板內其他區域的機會。

    (3)射頻器件及其RF布線布局原則。在物理空間上,像多級放大器這樣的線性電路通常足以將多個RF區之間相互隔離開來,但是雙工器、混頻器和中頻放大器/混頻器總是有多個RF/IF信號相互干擾.因此必須小心地將這一影響減到最小。RF與IF跡線應盡可能十字交叉,并盡可能在它們之間隔一塊地。正確的 RF路徑對整塊PCB的性能非常重要,這就是元器件布局通常在蜂窩電話PCB設計中占大部分時間的原因。

    (4)降低高/低功率器件干擾耦合的設計原則。在蜂窩電話PCB上,通常可以將低噪音放大器電路放在PCB的某一面,而將高功率放大器放在另一面,并最終通過雙工器把它們在同一面上連接到RF端和基帶處理器端的天線上。要用技巧來確保通孔不會把RF能量從板的一面傳遞到另一面,常用的技術是在二面都使用盲孔。可以通過將通孔安排在PCB板二面都不受RF干擾的區域來將通孔的不利影響減到最小。



    評論


    相關推薦

    技術專區

    關閉
    主站蜘蛛池模板: 惠安县| 涿州市| 永济市| 甘德县| 三台县| 克东县| 康平县| 穆棱市| 新化县| 古蔺县| 云林县| 吉首市| 东辽县| 博乐市| 达日县| 临武县| 遵义市| 临海市| 洛南县| 广平县| 丰城市| 嘉禾县| 康乐县| 楚雄市| 衢州市| 石城县| 丰原市| 岗巴县| 金坛市| 广平县| 保亭| 宁安市| 阿克苏市| 贡觉县| 耿马| 新乡县| 哈密市| 锡林郭勒盟| 佛山市| 正定县| 望都县|