• <li id="00i08"><input id="00i08"></input></li>
  • <sup id="00i08"><tbody id="00i08"></tbody></sup>
    <abbr id="00i08"></abbr>
  • 新聞中心

    EEPW首頁 > 模擬技術 > 設計應用 > 光伏并網逆變器控制的設計

    光伏并網逆變器控制的設計

    作者: 時間:2013-05-13 來源:網絡 收藏
    1 引言

      21世紀,人類將面臨著實現經濟和社會可持續發展的重大挑戰。在有限資源和保護環境的雙重制約下能源問題將更加突出,這主要體現在:①能源短缺;②環境污染;③溫室效應。因此,人類在解決能源問題,實現可持續發展時,只能依靠科技進步,大規模地開發利用可再生潔凈能源。太陽能具有儲量大、普遍存在、利用經濟、清潔環保等優點,因此太陽能的利用越來越受到人們的廣泛重視,成為理想的替代能源。文中闡述的功率為200W太陽能,將太陽能電池板產生的直流電直接轉換為220V/50Hz的工頻正弦交流電輸出至電網。

      2 系統工作原理及其控制方案

      2.1 電路原理

      太陽能的主電路原理圖如圖1所示。在本系統中,太陽能電池板輸出的額定電壓為62V的直流電,通過DC/DC變換器被轉換為400V直流電,接著經過DC/AC逆變后就得到220V/50Hz的交流電。系統保證并網逆變器輸出的220V/50Hz正弦電流與電網的相電壓同步。

      光伏并網逆變器控制的設計

      圖1 電路原理框圖

      2.2 系統控制方案

      圖2為光伏并網逆變器的主電路拓撲圖,此系統由前級的DC/DC變換器和后級的DC/AC逆變器組成。DC/DC變換器的逆變電路可選擇的型式有半橋式、全橋式、推挽式。考慮到輸入電壓較低,如采用半橋式則開關管電流變大,而采用全橋式則控制復雜、開關管功耗增大,因此這里采用推挽式電路。DC/DC變換器由推挽逆變電路、高頻變壓器、整流電路和濾波電感構成,它將太陽能電池板輸出的62V的直流電壓轉換成400V的直流電壓。

      光伏并網逆變器控制的設計

      圖2 主電路拓撲圖

      DC/AC逆變器的主電路采用全橋式結構,由4個MOS管(該管內部寄生了反并聯的二極管)構成,它將400V的直流電轉換成為220V/50Hz的工頻交流電。

      2.2.1 DC/DC變換器控制方案

      DC/DC變換器的控制框圖如圖3所示。控制電路是以集成電路SG3525為核心,由SG3525輸出的兩路50kHz的驅動信號,經門極驅動電路加在推挽電路開關管Q1和Q2的門極上。為保持DC/DC變換器輸出電壓的穩定,將檢測到的輸出電壓與指令電壓進行比較,該誤差電壓經PI調節器后控制SG3525輸出驅動信號的占空比。該控制電路還具有限制輸出過流過壓的保護功能。當檢測到DC/DC變換器輸出電流過大時,SG3525將減小門極脈沖的寬度,降低輸出電壓,進而降低了輸出電流。當輸出電壓過高時,會停止DC/DC變換器的工作。由于推挽式電路容易因直流偏磁導致變壓器飽和,因此,推挽式電路的設計難點在于如何防止變壓器的磁飽和。在本電路中,除了注意電路的對稱性之外,還設計了磁飽和檢測電路,當流經推挽電路的兩個支路電流失衡時,就會啟動SG3525的軟啟動功能,使DC/DC變換器重新啟動,變壓器得以復位。

      光伏并網逆變器控制的設計

      圖3 DC/DC變換器的控制框圖

      偏磁檢測電路如圖4所示。圖中只畫出了磁環的副邊。原邊兩個線圈接在主電路的變壓器原邊的兩個繞組上,流過兩個線圈中的電流方向要相反。當變壓器發生偏磁時,某一方向的電流異常大,通過電流互感器檢測,可在互感器的輸出電阻R1上產生一個電壓,如果該電壓足夠大,可以使穩壓二極管D5導通,在電位器上產生壓降,將電位器的值調到合適的阻值,使電位器上的壓降大于三極管的門限電壓,使三極管導通,接在芯片SG3525的腳8與地之間的電容放電,然后SG3525中的恒流源對它充電,SG3525重新啟動,從而使變壓器磁心復位。

      光伏并網逆變器控制的設計

      圖4 偏磁檢測電路

      2.2.2 DC/AC逆變器控制方案

      DC/AC逆變器是光伏并網的重點和難點,因此以下將著重闡述該部分。DC/AC逆變器控制框圖如圖5所示。核心控制芯片采用了TI公司的TMS320F240。盡管單片機也能實現并網逆變器的脈寬調制,但是DSP實時處理能力更強大,因此可以保證系統有更高的開關工作頻率。從圖5可以清楚看出系統輸入和輸出信號的情況。

      光伏并網逆變器控制的設計

      圖5 DC/AC逆變器的控制框圖

      2.3 輸出功率優化控制方案

      在靜態情況下,當并網逆變器與太陽能電池相連時,并網逆變器可等效為太陽能電池的負載電阻。當光強λ和溫度T變化時,太陽能電池輸出的端電壓將會隨之發生變化。為了有效地利用太陽能,應使太陽能電池的輸出始終處于適當的工作點。因此,控制方案要求當太陽能電池的電壓升高時,可以增大它的輸出功率;反之就降低它的輸出功率。

      DSP的控制方案如圖6所示,參考電壓和太陽能電池的實際電壓相比較后,其誤差經過PI調節,將得到的電流指令(直流量)IREF與ROM里的正弦表值相乘,就得到交變的輸出電流指令iref,再將它與實際的輸出電流值比較后,其誤差經過比例(P)環節,將所得到的指令取反,與采集到的交流側電壓Us相加后,所得到的波形再與三角波比較,就產生4路PWM調制信號(三角波的頻率為20kHz)。

      光伏并網逆變器控制的設計

      圖6 DSP的控制方案

      2.4 交流側電壓Us的檢測

      將同步變壓器副邊的同步信號,濾波、整流,就可以得到比較穩定的直流電,將其送到DSP的A/D轉換口。由于最后得到的直流電壓與電網電壓有一個比較穩定的關系,因此,就比較容易換算Us的值了。

      由于涉及到共地的問題,因此,采用了運算放大器的全波精密整流電路,如圖7所示。

      光伏并網逆變器控制的設計

      圖7 Us的整流電路

      2.5 電流指令的同步

      并網時要求逆變器輸出的正弦波電流與電網電壓同頻、同相。首先,將電網電壓信號經過濾波整形為同步方波信號,再將其輸入到TMS320F240的外部中斷口XINT1,目的是為了捕捉電網電壓的過零信號。如圖8所示,電網電壓正弦波,經過整形后就得到了方波。

      當DSP檢測到過零信號的上跳沿時,便觸發同步中斷,以此時間點作為基準給定正弦波信號時間起點,也就是正弦表指針復位到零;每當T1下溢中斷(PWM實時控制)時,正弦表指針便加1,并從正弦表中取值。一個周期的單位正弦波數據被分成了400個點采用表的形式存放在存儲器中。由于同步信號比較容易受到諧波和尖峰電壓的干擾,因此在進入同步中斷后可以先做一個延時,判斷外部中斷腳XINT1是否仍然是高電平,如果是高電平,就執行中斷程序,否則就從中斷程序跳出。

      從圖6的控制方案可看出,IREF與正弦表中數據相乘后,便形成了幅值可調的正弦波的電流給定信號,然后,再實時比較電流給定值,經過P環節后,所得信號反相后,與采集到的交流側電網電壓信號Us相加,所得波形與三角波比較,就產生了PWM波,控制橋臂的通斷。總之,輸出電流和電網電壓的同頻、同相的要求是通過電流跟蹤控制實現的。

      2.6 PWM脈寬調制波的產生

      PWM波的產生是通過TMS320F240的全比較單元輸出的,頻率為20kHz。從圖6可知,調制脈沖的產生是通過將電流指令值與實際電流值比較后,經過P環節,所得到的波形與三角波(頻率為20kHz)比較后獲得的。因此MOS管Q3、Q4、Q5、Q6(見圖2)脈沖的產生時刻可以從圖8得出,參照正弦波與三角波調制,兩者相交決定了PWM的脈沖時刻。實際由采樣的波形(實際上是階梯波)與三角波相交,由交點得出脈沖寬度。本系統是在三角波的底點位置對波形進行采樣而形成的階梯波。此階梯波與三角波的交點所確定的脈寬在一個采樣周期內的位置是對稱的,如圖9所示。

      光伏并網逆變器控制的設計

    脈寬調制相關文章:脈寬調制原理

    上一頁 1 2 下一頁

    關鍵詞: 光伏 并網 逆變器

    評論


    相關推薦

    技術專區

    關閉
    主站蜘蛛池模板: 陆丰市| 乌拉特后旗| 逊克县| 房山区| 颍上县| 吴旗县| 河池市| 大英县| 云浮市| 和林格尔县| 舞钢市| 永安市| 元氏县| 沐川县| 荣成市| 突泉县| 凭祥市| 连江县| 商城县| 渝北区| 英山县| 德惠市| 丹寨县| 台中市| 抚州市| 恭城| 邯郸市| 琼结县| 樟树市| 开阳县| 隆林| 旬邑县| 都安| 永胜县| 长子县| 安龙县| 类乌齐县| 镶黄旗| 安多县| 湾仔区| 互助|