• <li id="00i08"><input id="00i08"></input></li>
  • <sup id="00i08"><tbody id="00i08"></tbody></sup>
    <abbr id="00i08"></abbr>
  • 新聞中心

    EEPW首頁 > 電源與新能源 > 設計應用 > 牛人居然把功率MOS剖析成這樣,很難得的資料!

    牛人居然把功率MOS剖析成這樣,很難得的資料!

    作者: 時間:2025-01-09 來源:硬件筆記本 收藏

    功率的正向導通等效

    本文引用地址:http://www.czjhyjcfj.com/article/202501/466149.htm


    (1):等效


    (2):說明:

    功率 正向導通時可用一電阻等效,該電阻與溫度有關,溫度升高,該電阻變大;它還與門極驅動電壓的大小有關,驅動電壓升高,該電阻變小。詳細的關系曲線可從制造商的手冊中獲得。


    功率的反向導通等效(1)


    (1):等效電路(門極不加控制)


    (2):說明:

    即內部二極管的等效電路,可用一電壓降等效,此二極管為MOSFET 的體二極管,多數情況下,因其特性很差,要避免使用。


    功率MOSFET的反向導通等效電路(2)


    (1):等效電路(門極加控制)


    (2):說明:

    功率 MOSFET 在門級控制下的反向導通,也可用一電阻等效,該電阻與溫度有關,溫度升高,該電阻變大;它還與門極驅動電壓的大小有關,驅動電壓升高,該電阻變小。詳細的關系曲線可從制造商的手冊中獲得。此工作狀態稱為MOSFET 的同步整流工作,是低壓大電流輸出開關電源中非常重要的一種工作狀態。


    功率MOSFET的正向截止等效電路


    (1):等效電路


    (2):說明:

    功率 MOSFET 正向截止時可用一電容等效,其容量與所加的正向電壓、環境溫度等有關,大小可從制造商的手冊中獲得。


    功率MOSFET的穩態特性總結


    (1):功率MOSFET 穩態時的電流/電壓曲線


    (2):說明:

    功率 MOSFET 正向飽和導通時的穩態工作點:


    當門極不加控制時,其反向導通的穩態工作點同二極管。

    (3):穩態特性總結:

    -- 門極與源極間的電壓Vgs 控制器件的導通狀態;當Vgs<Vth時,器件處于斷開狀態,Vth一般為 3V;當Vgs>Vth時,器件處于導通狀態;器件的通態電阻與Vgs有關,Vgs大,通態電阻小;多數器件的Vgs為 12V-15V ,額定值為+-30V;


    -- 器件的漏極電流額定是用它的有效值或平均值來標稱的;只要實際的漏極電流有效值沒有超過其額定值,保證散熱沒問題,則器件就是安全的;

    -- 器件的通態電阻呈正溫度系數,故原理上很容易并聯擴容,但實際并聯時,還要考慮驅動的對稱性和動態均流問題;

    -- 目前的 Logic-Level的功率 MOSFET,其Vgs只要 5V,便可保證漏源通態電阻很小;

    -- 器件的同步整流工作狀態已變得愈來愈廣泛,原因是它的通態電阻非常小(目前最小的為2-4 毫歐),在低壓大電流輸出的DC/DC 中已是最關鍵的器件;


    包含寄生參數的功率MOSFET等效電路


    (1):等效電路


    (2):說明:

    實際的功率MOSFET 可用三個結電容,三個溝道電阻,和一個內部二極管及一個理想MOSFET 來等效。三個結電容均與結電壓的大小有關,而門極的溝道電阻一般很小,漏極和源極的兩個溝道電阻之和即為MOSFET 飽和時的通態電阻。


    功率MOSFET的開通和關斷過程原理


    (1):開通和關斷過程實驗電路



    (2):MOSFET 的電壓和電流波形:



    (3):開關過程原理:

    開通過程[ t0 ~ t4 ]:

    • 在 t0 前,MOSFET 工作于截止狀態,t0 時,MOSFET 被驅動開通;

    • [t0-t1]區間,MOSFET 的GS 電壓經Vgg 對Cgs充電而上升,在t1時刻,到達維持電壓Vth,MOSFET 開始導電;

    • [t1-t2]區間,MOSFET 的DS 電流增加,Millier 電容在該區間內因DS 電容的放電而放電,對GS 電容的充電影響不大;

    • [t2-t3]區間,至t2 時刻,MOSFET 的DS 電壓降至與Vgs 相同的電壓,Millier 電容大大增加,外部驅動電壓對Millier 電容進行充電,GS 電容的電壓不變,Millier 電容上電壓增加,而DS電容上的電壓繼續減小;

    • [t3-t4]區間,至t3 時刻,MOSFET 的DS 電壓降至飽和導通時的電壓,Millier 電容變小并和GS 電容一起由外部驅動電壓充電,GS 電容的電壓上升,至t4 時刻為止。此時GS 電容電壓已達穩態,DS 電壓也達最小,即穩定的通態壓降。


    關斷過程[ t5 ~t9 ]:

    • 在 t5 前,MOSFET 工作于導通狀態, t5 時,MOSFET 被驅動關斷;

    • [t5-t6]區間,MOSFET 的Cgs 電壓經驅動電路電阻放電而下降,在t6 時刻,MOSFET 的通態電阻微微上升,DS 電壓梢稍增加,但DS 電流不變;

    • [t6-t7]區間,在t6 時刻,MOSFET 的Millier 電容又變得很大,故GS 電容的電壓不變,放電電流流過Millier 電容,使DS 電壓繼續增加;

    • [t7-t8]區間,至t7 時刻,MOSFET 的DS 電壓升至與Vgs 相同的電壓,Millier 電容迅速減小,GS 電容開始繼續放電,此時DS 電容上的電壓迅速上升,DS 電流則迅速下降;

    • [t8-t9]區間,至t8 時刻,GS 電容已放電至Vth,MOSFET 完全關斷;該區間內GS 電容繼續放電直至零。


    因二極管反向恢復引起的MOSFET開關波形


    (1):實驗電路



    (2):因二極管反向恢復引起的MOSFET 開關波形:


    功率MOSFET的功率損耗公式


    (1):導通損耗:



    該公式對控制整流和同步整流均適用



    該公式在體二極管導通時適用

    (2):容性開通和感性關斷損耗:




    為MOSFET 器件與二極管回路中的所有分布電感只和。一般也可將這個損耗看成器件的感性關斷損耗。


    (3):開關損耗:

    開通損耗:



    考慮二極管反向恢復后:



    關斷損耗:



    驅動損耗:


    功率MOSFET的選擇原則與步驟


    (1):選擇原則

    (A):根據電源規格,合理選擇MOSFET 器件(見下表):

    (B):選擇時,如工作電流較大,則在相同的器件額定參數下,

    -- 應盡可能選擇正向導通電阻小的 MOSFET;

    -- 應盡可能選擇結電容小的 MOSFET。



    (2):選擇步驟


    (A):根據電源規格,計算所選變換器中MOSFET 的穩態參數:

    • 正向阻斷電壓最大值;

    • 最大的正向電流有效值;

    (B):從器件商的DATASHEET 中選擇合適的MOSFET,可多選一些以便實驗時比較;

    (C):從所選的MOSFET 的其它參數,如正向通態電阻,結電容等等,估算其工作時的最大損耗,與其它元器件的損耗一起,估算變換器的效率;

    (D):由實驗選擇最終的MOSFET 器件。


    理想開關的基本要求


    (1):符號



    (2):要求

    (A):穩態要求:

    合上 K 后

    • 開關兩端的電壓為零;

    • 開關中的電流有外部電路決定;

    • 開關電流的方向可正可負;

    • 開關電流的容量無限。

    斷開 K 后

    • 開關兩端承受的電壓可正可負;

    • 開關中的電流為零;

    • 開關兩端的電壓有外部電路決定;

    • 開關兩端承受的電壓容量無限。

    (B):動態要求:

    K 的開通

    • 控制開通的信號功率為零;

    • 開通過程的時間為零。

    K 的關斷

    • 控制關斷的信號功率為零;

    • 關斷過程的時間為零。

    (3):波形


    其中:H:控制高電平;L:控制低電平

    • Ion 可正可負,其值有外部電路定;

    • Voff 可正可負,其值有外部電路定。


    用電子開關實現理想開關的限制


    (1):電子開關的電壓和電流方向有限制:

    (2):電子開關的穩態開關特性有限制:

    • 導通時有電壓降;(正向壓降,通態電阻等)

    • 截止時有漏電流;

    • 最大的通態電流有限制;

    • 最大的阻斷電壓有限制;

    • 控制信號有功率要求,等等。

    (3):電子開關的動態開關特性有限制:

    • 開通有一個過程,其長短與控制信號及器件內部結構有關;

    • 關斷有一個過程,其長短與控制信號及器件內部結構有關;

    • 最高開關頻率有限制。


    目前作為開關的電子器件非常多。在開關電源中,用得最多的是二極管、MOSFET、IGBT 等,以及它們的組合。


    電子開關的四種結構


    (1):單象限開關



    (2):電流雙向(雙象限)開關



    (3):電壓雙向(雙象限)開關



    (4):四單象限開關


    開關器件的分類


    (1):按制作材料分類:

    (2):按是否可控分類:

    • 完全不控器件:如二極管器件;

    • 可控制開通,但不能控制關斷:如普通可控硅器件;

    • 全控開關器件

    • 電壓型控制器件:如MOSFET,IGBT,IGT/COMFET ,SIT 等;

    • 電流型控制期間:如GTR,GTO 等

    (3):按工作頻率分類:

    • 低頻功率器件:如可控硅,普通二極管等;

    • 中頻功率器件:如GTR,IGBT,IGT/COMFET;

    • 高頻功率器件:如MOSFET,快恢復二極管,蕭特基二極管,SIT 等

    (4):按額定可實現的最大容量分類:

    • 小功率器件:如MOSFET

    • 中功率器件:如IGBT

    • 大功率器件:如GTO

    (5):按導電載波的粒子分類:

    • 多子器件:如MOSFET,蕭特基,SIT,JFET 等

    • 少子器件:如IGBT,GTR,GTO,快恢復,等


    不同開關器件的比較


    (1):幾種可關斷器件的功率處理能力比較


    (2):幾種可關斷器件的工作特性比較


    上面的數據會隨器件的發展而不斷變化,僅供參考。




    關鍵詞: 功率器件 MOSFET 電路

    評論


    相關推薦

    技術專區

    關閉
    主站蜘蛛池模板: 克什克腾旗| 剑川县| 伽师县| 怀安县| 乐陵市| 邳州市| 宜州市| 曲麻莱县| 西华县| 鄯善县| 汝阳县| 叶城县| 河池市| 河北区| 塔城市| 萨嘎县| 台前县| 新源县| 大名县| 德安县| 沅陵县| 徐汇区| 信丰县| 台南县| 湟中县| 福鼎市| 景洪市| 民权县| 汶上县| 扬中市| 文水县| 普安县| 舒城县| 班玛县| 黎城县| 虎林市| 甘孜县| 长沙市| 林州市| 濉溪县| 怀仁县|