• <li id="00i08"><input id="00i08"></input></li>
  • <sup id="00i08"><tbody id="00i08"></tbody></sup>
    <abbr id="00i08"></abbr>
  • 新聞中心

    EEPW首頁 > 模擬技術(shù) > 設(shè)計應用 > 運算放大器電路固有噪聲的分析與測量(二)

    運算放大器電路固有噪聲的分析與測量(二)

    作者: 時間:2007-08-21 來源:網(wǎng)絡(luò) 收藏

    本文引用地址:http://www.czjhyjcfj.com/article/189194.htm

    噪聲的重要特性之一就是其頻譜密度。電壓噪聲頻譜密度是指每平方根赫茲的有效( RMS) 噪聲電壓(通常單位為nV/rt-Hz)。功率譜密度的單位為W/Hz。在上一篇文章中,我們了解到電阻的熱噪聲可用方程式 2.1 計算得出。該算式經(jīng)過修改也可適用于頻譜密度。熱噪聲的重要特性之一就在于頻譜密度圖較平坦(也就是說所有頻率的能量相同)。因此,熱噪聲有時也稱作寬帶噪聲。運算放大器也存在寬帶噪聲。寬帶噪聲即為頻譜密度圖較平坦的噪聲。

    表 2.1:磚墻式濾波器校正系數(shù)

    既然我們有了將實際濾波器轉(zhuǎn)換為磚墻式濾波器的算式,那么我們就能很方便地進行功率頻譜的積分運算了。請記住,功率的積分運算為電壓頻譜的平方。我們需將積分結(jié)果進行平方根運算轉(zhuǎn)換回電壓。方程式 2.3 即由此得出(見附錄 2.1)。因此,根據(jù)產(chǎn)品說明書中的數(shù)據(jù)套用方程式 2.2 、方程式 2.3便可計算出寬帶噪聲。

    方程式 2.3:寬帶噪聲方程式


    我們需記住,我們的目標是測定圖 2.3 中噪聲源 Vn 的幅度。該噪聲源包括寬帶噪聲與 1/f 噪聲。我們用方程式 2.2 與 2.3 可計算出寬帶噪聲。現(xiàn)在我們應計算 1/f 噪聲,這就需求對噪聲頻率密度圖 1/f 區(qū)域的功率頻譜進行積分計算(如圖 2.10所示)。我們可用方程式 2.4 和 2.5 獲得有關(guān)積分結(jié)果。方程式 2.4 將 1/f 區(qū)的噪聲結(jié)果歸一化為 1Hz 時的噪聲。某些情況下,我們可從圖中直接讀出該數(shù)值,有時用方程式更方便求得(見圖 2.11)。方程式2.5用歸一化噪聲、上部噪聲帶寬與下部噪聲帶寬來計算 1/f 噪聲。附錄 2.2 給出了整個演算過程。

    圖 2.10:1/f 區(qū)域

    方程式 2.4:頻率為 1Hz 時的噪聲 (歸一化)

    圖 2.11:兩個 1/f 歸一化示例


    方程式 2.5:1/f 噪聲計算

    在考慮 1/f 噪聲時,我們必須選擇低頻截止點。這是因為 1/f 函數(shù)分母為零時無意義(即 1/0 無意義)。事實上,理論上 0 赫茲時噪聲趨近于無窮。但我們應當考慮到,頻率極低時,其相應的時間也非常長。舉例來說,0.1Hz 對應于 10 秒,而 0.001Hz則對應于 1000 秒。對極低的頻率而言,對應的時間有可能為數(shù)年(如 10nHz 對應于 3 年)。頻率間隔越大,積分計算所得的噪聲就越大。不過我們也要記住,極低頻噪聲檢測需要很長時間。我們在以后的文章中將更詳細地探討此問題。目前,我們暫且記住這一點,1/f 計算時通常用 0.1Hz 作為低頻截止點。

    既然我們已得到了寬帶與 1/f 噪聲的幅度,現(xiàn)在就用第一部分給出的無相關(guān)噪聲源算式來疊加噪聲源 (見如下方程式 2.6 與本系列文章的第一部分中的方程式 1.8)。

    方程式 2.6: 1/f 與寬帶噪聲疊加結(jié)果

    工程師考慮方法時通常會擔心,1/f 噪聲與寬帶噪聲是否應在兩個不同的區(qū)域進行積分計算。換言之,他們認為,由于 1/f 噪聲與寬帶噪聲相加后會超出 1/f 區(qū)域,從而出現(xiàn)錯誤。實際上,1/f 區(qū)域與寬帶區(qū)域一樣,都涵蓋所有頻率。我們必須記住,當噪聲頻譜顯示在對數(shù)圖上,1/f 區(qū)在降至寬帶曲線以下后影響極小。兩條曲線結(jié)合明顯的唯一區(qū)域就在 1/f 半功率頻點處。在此區(qū)域中,我們看到兩區(qū)域結(jié)合部的情況與數(shù)學模型相同。圖 2.12 顯示了兩區(qū)實際重疊的情況,并給出了相應的幅度。



    圖 2.12:1/f 噪聲區(qū)與寬帶區(qū)重疊

    現(xiàn)在,我們已得到了將噪聲頻譜密度曲線轉(zhuǎn)換為噪聲源所需的全部方程式。請注意,現(xiàn)在我們已推算出了電壓噪聲所需的方程式,不過相同的方法也可運用于電流噪聲的計算。在本系列隨后的文章中,我們將討論用有關(guān)方程式來解決運算放大器電流的噪聲問題。

    本文總結(jié)與下一篇文章簡介

    在噪聲系列文章中,本文介紹了運算放大器的噪聲模型與噪聲頻譜密度曲線。此外,我們還介紹了基本的噪聲計算方程式。本系列的第三部分將用實例說明實際電路中的噪聲計算過程。

    致謝!

    特別感謝以下人員提供的技術(shù)意見

    TIBurr-Brown 產(chǎn)品部:

    Rod Bert,高級模擬 IC 設(shè)計經(jīng)理
    Bruce Trump,線性產(chǎn)品經(jīng)理
    Tim Green,應用工程設(shè)計經(jīng)理
    Neil Albaugh,高級應用工程師


    參考書目

    Robert V. Hogg 與 Elliot A Tanis 共同編著的《概率與統(tǒng)計推斷》,第三版,麥克米蘭出版公司 (Macmillan Publishing Co.)出版;

    C. D. Motchenbacher 與 J. A. Connelly 共同編著的《低噪聲電子系統(tǒng)設(shè)計》,Wiley-Interscience Publication 出版。
    關(guān)于作者:

    Arthur Kay是 TI 的高級應用工程師。他專門負責傳感器信號調(diào)節(jié)器件的支持工作。他于 1993 年畢業(yè)于佐治亞理工學院 (Georgia Institute of Technology)并獲得電子工程碩士學位。他曾在 Burr-Brown與 Northrop Grumman 公司擔任過半導體測試工程師。

    附錄 2.1:


    附錄 2.2:

    一階濾波器“磚墻”校正系數(shù)的演算過程。



    評論


    相關(guān)推薦

    技術(shù)專區(qū)

    關(guān)閉
    主站蜘蛛池模板: 邹城市| 肃南| 稻城县| 阜南县| 邛崃市| 高州市| 西和县| 澜沧| 凤山县| 武宁县| 荆州市| 平果县| 望城县| 轮台县| 顺平县| 乌拉特前旗| 苍梧县| 喀什市| 曲沃县| 留坝县| 蓬安县| 台东市| 大化| 德令哈市| 台山市| 石嘴山市| 广安市| 石泉县| 荔浦县| 绥江县| 东乡县| 中江县| 黄梅县| 吴旗县| 广河县| 永川市| 兰坪| 海宁市| 栾川县| 化州市| 平武县|